# Coastal Flood Hazard Analysis for Vashon and Maury Islands

**FEMA Region X** 

King County River and Floodplain

**Management Section** 

**Public Meeting** 

**April 28, 2011** 





### Agenda

- Introductions
- Background on King County Flood Studies
- Technical Overview of Coastal Flood Hazard
   Study of Vashon and Maury Islands
- Overview of FEMA National Flood Insurance Program
- King County Proposed Coastal Flood Hazard Regulations
- Questions

# Coastal High Hazard Area Flood Mapping

- Why do we need new flood hazard maps?
  - Current maps are approximate: flood zone A
     (largest A Zone in the County)
  - A Zones are not the result of technical analysis
  - Current maps are from the 70s and have known errors: high bluffs mapped in the flood zone.
  - New maps created from current data and analytic methods.

# **Key Technical Tasks**

- Field Surveys and Reconnaissance
- New Aerial Photography
- Topographic Data Development
- Offshore Wave Modeling
- Nearshore Hydraulic Modeling
- Statistical Analysis/Floodplain Mapping
- Sea-level Rise Evaluation







## Field Surveys and Reconnaissance





- Field Reconnaissance by King County and NHC staff on August 17, 2009
- Supported by Pacific
   Geomatic Services
   survey boat
- Collected video and photographic information

# **Aerial Photography**



- Aerial photography of Vashon-Maury Island on March 11, 2009
- Individual Digital Photo Tiles and MrSID mosaic
- Data used for detailed topographic mapping and feature data collection of shoreline areas

# **Topographic Data Development**



- Developed by 3DI-West using aerial imagery
- 2-foot contour mapping from 0-foot to 50-foot elevation or higher
- Topographic maps produced at a scale of 1 inch = 500 feet

# **Topographic Data Development**



- Used NOAA bathymetric soundings – surveys conducted from early 1800s to present
- Merged with topographic data to create seamless bathymetric surface

# **Numerical Analyses**



# Offshore to Nearshore - Wave Modeling

#### **Bathymetry**



**Tides** 



Wind



Waves



# Offshore to Nearshore – Wave Modeling

#### **Model Used**

- Simulating WAves Nearshore (SWAN) [FEMA approved model]
- 2-D Wave Propagation and Wave Transformations

#### **Model Input**

- NOAA Bathymetry data (underwater topography)
- Wind data

#### **Model Output**

- Tidal Data
- Still Water Elevations
- Wave Heights, Velocities, Periods, and Directions

# **SWAN Model Domain and Grid**





# **SWAN Model Input - Wind Data**



### **Primary Historic Record**

 60 years of NWS observations at SeaTac

### **Spatial Distribution**

Correlation with 15 regional wind gages

## **SWAN Model Input - Tide Data**



#### 



#### **Predicted Tides**

- Based on astronomical constants
- Repeating pattern every 18.6 years

# Residuals (difference between observed and predicted)

- Based on 70 years of data at Seattle NOAA gage
- Residual = Observed –Predicted Tide
- Statistical analysis of residuals

## **SWAN Model Output**

- Still Water Elevations
- Wave Height
- Wave Period

- Wave Length
- Wave Direction



# Nearshore to Land – Runup and Overtopping

**Coastal Geometry** 

**Wave Data** 



**From SWAN** 



From Topography/
Bathymetry

**Wave Runup** 



Using Methods and Equations from FEMA Pacific Coast Guidelines

# Nearshore to Land – Runup and Overtopping

#### **Model Used**

- FEMA Pacific Coast Guidelines
- Runup and Overtopping Equations for Beaches and Structures

#### **Model Input**

- Wave and Tide Data from SWAN Model
- Transect Geometry (bathymetry/aerial photogrammetry)
- Transect Characteristics (berms, toes, crests, surface roughness, shore angle, etc.)

#### **Model Output**

Total Water Level (TWL) Elevations for Each Event





### Nearshore to Land – Model Results

- Wave runup
- Total water level
- Overtopping (in some cases)



# Landward of Crest (if overtopping occurs)

- Bore Propagation or Splash
- Elevation of AE Zone



# **Statistical Analysis**

#### **For Each Transect:**

- Hypothetical 1000 year record of tides/winds/wave events created
- Detailed simulations performed for 10 highest tides and 10 highest wind events in each year
- 100-year and 500-year event data for total water level, overtopping flows, and inland extent of flooding extracted from 1000-year record

# Floodplain Mapping

### For Entire Vashon-Maury Island Coastline:

- 100-year Total Water Levels mapped
- VE and AE Zones delineated according to FEMA Pacific Coast Guidelines
- Work maps produced at a scale of 1 inch = 500 feet
- FEMA DFIRM database created
- Flood Hazard Atlas produced at scale 1 inch = 200 feet
- Mean High Water Important Regulatory Elevation





ZONE AE



### Sea Level Rise Scenario

- Based on assumption of 2 foot increase in sea level (tidal water surfaces).
- Wave runup and overtopping recomputed with revised tide data
- Changes in coastal flood hazard (total water levels) mapped for assumed sea level rise
- Estimated increase in TWL ranged from 0.5 to 6 feet

### Sea Level Rise Scenario



# **Switch to FEMA Presentation**

# Coastal High Hazard Area Flood Regulations

- Why do we need new flood regulations?
  - Current maps designate coastal area as flood zone
     "A"
  - King County has flood regulations for "A" zones
  - New maps will establish AE and VE
  - King County has flood regulations for the AE zone but not the VE zone
- National Flood Insurance Program requirement

# Summary of New Coastal High Hazard Area Flood Regulations

- Elevate new buildings and substantial improvements on pilings and columns.
- Non-supporting open lattice-work allowed under finished floor.
- The lowest floor must be three feet above the 100-year flood elevation (current code).
- The foundation must be anchored to prevent flotation, collapse and lateral movement.

# Summary of New Coastal High Hazard Area Flood Regulations Cont.

- A registered professional engineer or architect must prepare the structural design.
- All new buildings must be landward of mean high tide.
- The space below the lowest floor must be free of obstruction and used only for parking, access or storage. No human habitation is allowed below the lowest floor.
- Fill is not allowed for structural support.

# Summary of New Coastal High Hazard Area Flood Regulations Cont.

- FEMA elevation certificate required.
- Manufactured homes must meet the same standards as new buildings or substantial improvements to existing buildings.
- Recreational vehicles must be on site for fewer than 180 days or be ready for highway use.

### **SEPA Threshold Determination**

- King County has issued a State Environmental Policy Act (SEPA) Threshold Determination of Non-Significance for proposed regulations
- Comment period April 21 to May 13
- No administrative appeal

# How Can I Comment on Regulations and SEPA Threshold Determination?

King County River and Floodplain Management

Priscilla Kaufmann, CFM, Project Manager

(206) 296-8380

Priscilla.kaufmann@kingcounty.gov

Comments must be received by May 13, 2011

# **Upcoming Milestones**

### **Coastal Flood Hazard Maps and Study:**

- May Receive public comments
- July Revise Study as Necessary and Provide Draft Maps and Technical Data to FEMA for Review
- July September (?) FEMA Review
- 2012 FEMA Preliminary Flood Insurance Rate Map and Study

## **Mapping Study Contacts**

#### King County River and Floodplain Management

Jeanne Stypula, Supervising Engineer, (206) 296-8380 Jeanne.stypula@kingcounty.gov

Kyle Comanor, Project Engineer, (206) 684-1272 Kyle.comanor@kingcounty.gov

#### **FEMA Region X, Mitigation Division**

John Graves, Senior NFIP Specialist, (425) 487-4737 john.graves1@dhs.gov

#### **Washington Department of Ecology**

David Radabaugh, State NFIP Coordinator, (425) 649-4260 drad461@ecy.wa.gov